翻訳と辞書 |
All-interval tetrachord : ウィキペディア英語版 | All-interval tetrachord
An all-interval tetrachord is a tetrachord, a collection of four pitch classes, containing all six interval classes.〔Whittall, Arnold. 2008. ''The Cambridge Introduction to Serialism'', p.271. Cambridge Introductions to Music. New York: Cambridge University Press. ISBN 978-0-521-86341-4 (hardback) ISBN 978-0-521-68200-8 (pbk).〕 There are only two possible all-interval tetrachords. In set theory notation, these are () (4-Z15)〔Schuijer, Michiel (2008). ''Analyzing Atonal Music: Pitch-Class Set Theory and Its Contexts'', p.109. ISBN 978-1-58046-270-9.〕 and () (4-Z29).〔Forte, Allen (1998), ''The Atonal Music of Anton Webern'', p.17. ISBN 0-300-07352-6.〕 The interval vector for both all-interval tetrachords is (). == Table of interval classes as relating to all-interval tetrachords ==
In the examples below, the tetrachords () and () are built on E.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「All-interval tetrachord」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|